Hypertonic vs. Hypotonic Solutions

Solvent: substance that “holds” another (often water)
Solute: substance dissolved into solvent (examples: salt, sugar, etc)
Hypertonic: less solute (more solvent) wants to take on more solute or get rid of solvent
Hypotonic: more solute (less solvent) wants to get rid of solute or take on more solvent

In each of the 3 following situations, look at the two solutions in the first container.

Solution B has more solute, so it is (hypertonic/ hypotonic/ isotonic).

Options: (to try to become isotonic what could solution B do?)

1. Take in more _______________________.
 (Solvent or solute)

2. Release ____________________________.
 (Solute or solvent)

The result of situation 1 is seen at left.

Was option 1 or 2 taken?

Did diffusion or osmosis occur? (if water moved, osmosis occurred, if the particles moved, diffusion occurred. Count the particles!)
Solution A has more solute, so it is (hypertonic/ hypotonic/ isotonic).

Options: (to try to become isotonic what could solution B do?)

1. Take in more ________________________.
 (Solvent or solute)

2. Release ___________________________.
 (Solute or solvent)

The result of situation 2 is seen at left.

Was option 1 or 2 taken?

Did diffusion or osmosis occur?
(if water moved, osmosis occurred, if the particles moved, diffusion occurred. Count the particles!)
Solution B has less solute, so it is (hypertonic/ hypotonic/ isotonic).

Options: (to try to become isotonic what could solution B do?)

1. Take in more ________________________.
 (Solvent or solute)

2. Release ___________________________.
 (Solute or solvent)

The result of situation 3 is seen at left.

Was option 1 or 2 taken?

Did diffusion or osmosis occur?
(if water moved, osmosis occurred, if the particles moved, diffusion occurred. Count the particles!)